Recent Results on First and Second Order Difference Equations with Periodic Forcing

نویسنده

  • Behzad Djafari Rouhani
چکیده

By using our previous results for nonexpansive sequences, we study the existence and asymptotic behavior of solutions to first order, as well as second order difference equations of monotone type with periodic forcing. In the first order case, our result extends to general maximal monotone operators, the discrete analogue of a result of Baillon and Haraux proved for subdifferential operators. In the second order case, our results extend among other things, previous results of Apreutesei to the nonhomogeneous case, and show the asymptotic convergence of every bounded solution to a periodic solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dhage iteration method for PBVPs of nonlinear first order hybrid integro-differential equations

In this paper, author proves the algorithms for the existence as well as the approximation of solutions to a couple of periodic boundary value problems of nonlinear first order ordinary integro-differential equations using operator theoretic techniques in a partially ordered metric space. The main results rely on the Dhage iteration method embodied in the recent hybrid fixed point theorems of D...

متن کامل

Finite-Difference Time-Domain Simulation of Light Propagation in 2D Periodic and Quasi-Periodic Photonic Structures

Ultra-short pulse is a promising technology for achieving ultra-high data rate transmission which is required to follow the increased demand of data transport over an optical communication system. Therefore, the propagation of such type of pulses and the effects that it may suffer during its transmission through an optical waveguide has received a great deal of attention in the recent years. We...

متن کامل

C. Bereanu - J. Mawhin PERIODIC SOLUTIONS OF FIRST ORDER NONLINEAR DIFFERENCE EQUATIONS

This paper surveys some recent results on the existence and multiplicity of periodic solutions of nonlinear difference equations of the first order under Ambrosetti-Prodi or Landesman-Lazer type conditions.

متن کامل

Periodic Solutions of Second Order Nonlinear Functional Difference Equations

The development of the study of periodic solution of functional difference equations is relatively rapid. There has been many approaches to study periodic solutions of difference equations, such as critical point theory, fixed point theorems in Banach spaces or in cones of Banach spaces, coincidence degree theory, KaplanYorke method, and so on, one may see [3-7,11,13-15] and the references ther...

متن کامل

Periodic solutions of first order functional differential equations

The best ebooks about Periodic Solutions Of First Order Functional Differential Equations In Population Dynamics that you can get for free here by download this Periodic Solutions Of First Order Functional Differential Equations In Population Dynamics and save to your desktop. This ebooks is under topic such as communications in applied analysis 12 multiple periodic positive periodic solutions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013